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Abstract

A method is presented for detecting changes to the distribution of a criminal or terrorist point process between two time periods
using a non-model-based approach. By treating the criminal/terrorist point process as an intelligent site selection problem, changes
to the process can signify changes in the behavior or activity level of the criminals/terrorists. The locations of past events and
an associated vector of geographic, environmental, and socio-economic feature values are employed in the analysis. By modeling
the locations of events in each time period as a marked point process, we can then detect differences in the intensity of each
component process. A modified PRIM (patient rule induction method) is implemented to partition the high-dimensional feature
space, which can include mixed variables, into the most likely change regions. Monte Carlo simulations are easily and quickly
generated under random relabeling to test a scan statistic for significance. By detecting local regions of change, not only can it
be determined if change has occurred in the study area, but the specific spatial regions where change occurs is also identified. An
example is provided of breaking and entering crimes over two-time periods to demonstrate the use of this technique for detecting
local regions of change. This methodology also applies to detecting regions of differences between two types of events such as in
case–control data.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper considers the statistical detection of changes in a criminal or terrorist process. We consider any criminal
or terrorist process that involves some level of intelligent site selection; that is, the criminal judiciously selects the
location of the attack or crime according to their preferences or some perceived utility of that location. By observing
the attack/crime locations and the value of some geographical, socio-economic, environmental, or other features of the
event locations, we attempt to infer changes in the preferences or behavior of the criminals by detecting local changes
in the locations and feature values of the events between two time periods.

Consider as a motivating example the locations of improvised explosive devices (IEDs) in Iraq. These deadly weapons
pose a great danger to coalition forces. McFate (2005) describes the organization and increased sophistication in the
strategies of deploying IEDs by the insurgency in Iraq. If we assume the locations of the events are selected in an
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intelligent manner, changes in the site selections could reveal behavioral changes, or those related to the terrorist
decision making, such as if a new leader is planning attacks, or a security intervention has forced changes to where and
how a terrorist operates. We also attempt to detect changes in the activity level of the terrorist process such as when
terrorists have received additional supplies or members. We note the same type of change detection can be useful for
criminal processes as well. The detection of a change could be useful for resource allocation or further investigations
into the cause or details of the change.

Many spatial analyses of event data consider only the locations of events and leave out covariates. In considering
the location data, the events are related to each other only through their geodesic distance. Of course, this type of
analysis has shown its value as much can be inferred from the locations alone (Diggle, 1983). There exist some meth-
ods to detect change regions in a criminal point process, but these only consider spatially related changes (Rogerson,
2001; Rogerson and Sun, 2001; Ratcliffe, 2005). There is a similar problem in disease modeling where the interest
is to detect a disease outbreak by finding regions where the disease rate varies significantly from a possibly varying
baseline rate; yet these also only consider spatial changes (Besag and Newell, 1991; Kulldorff et al., 2003). How-
ever, in attempting to address the possibilities posed above, spatial displacement alone might not be sufficient, and
additional data might be necessary to detect such changes in the behavioral aspects of the criminal/terrorist process.
One approach could be to treat the feature data as another spatial dimension and use the existing methods. But that
might prove difficult in this case since there is the possibility of several heterogeneous criminal decision makers
(gang leaders, terrorist cells, etc.) operating in the same region. Either due to geography or preference, each decision
maker might consider only a subset of the feature set and these subsets can differ between the decision makers. Ad-
ditionally, these methods do not expand well to high-dimensional or mixed variable data and the feature set is not
uniformly distributed in the study region as the spatial location is. Other analyses, such as time series, can consider
the feature data in modeling the criminal process, but leave out the spatial aspect. Only global changes are really
considered and local changes that occur only in certain spatial regions of the study area could be overlooked. Spatial
regression (Anselin, 1988; Fotheringham et al., 1998) can account for the spatial regions, but requires a model-based
approach that will prove difficult in the high-dimensional, mixed variable, multiple decision making scenario we are
considering.

In this paper, we take an approach for explaining criminal/terrorist actions based on ecological theory. Ecology
theories seek to describe the motivations and acts of crime based on the general features of one’s environment, which
can directly relate to the environment of the criminal or crime scene (Cohn and Felson, 1979; Brantingham and
Brantingham, 1981; Byrne and Sampson, 1986; Anselin et al., 2000). In other words, the criminals/terrorists choose the
location of the crime based upon some attributes or features of the location (Cornish and Clarke, 1986). Additionally,
some environmental conditions will encourage or discourage crime, such as poor economic conditions or drinking
establishments (Bursik, 1988). All of these theories point to the explanation that there are some features of the locations
of the crimes/attacks which are important to criminal decision making. Rossmo (1999), Liu and Brown (2003), and
Law and Haining (2004) use this concept to model crime by including a location’s attributes or features in addition to
the spatial information.

Therefore to detect changes in the criminal/terrorist process, we must detect changes not just in spatial location
alone, but also in these attributes of the locations. For each type of crime or terrorist act, we can expect that the set
of features that are used for decision making differ. For example, a burglar might be interested in locations that offer
quick escape or hiding while a suicide bomber might choose locations that are highly populated. Indeed there might
even be several groups of criminals or terrorists that commit the same crime type but have different motivations and
risk levels thus consider different feature sets in their site selection.

We would like to capture these environmental factors which are influencing criminal/terrorist actions. However, since
they are specific to the individual criminal and generally unknown, we must assume that not all of the features can be
captured in our feature set. Therefore, guided by theory or expert opinion, we capture the features that are assumed to
influence the decision making process or surrogate features that could be correlated with the true features considered.
Considering the many motivations for site selection among the possibly diverse criminal and terrorist decision makers,
the task of feature selection may seem daunting. This is more so in the case of change detection since a change in the
process over any single feature signifies a change and one feature that was not considered in one time period could be
considered in the next. We do not treat feature selection in this paper but do report on some results when excess noise
variables are present in Section 4.
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2. Formulation

A point process N is a stochastic model governing the location (and number) of events in some set X (Cressie, 1993).
A point process can be represented by

N(·) =
K∑

i=1

I (si ∈ ·) ,

where I is the indicator function, si is an event, and K is an integer-valued random variable. Therefore, N(B) is the
number of events in a set B ⊆ X.

A Poisson point process satisfies two conditions (Karr, 1986):

(1) Whenever B1, . . . , Bn ∈ B are disjoint, the random variables N (B1) , . . . , N (Bn) are independent.
(2) For each B ∈ B and k�0,

P {N(B) = k} = exp−�(B)�(B)

k! .

The �-finite mean measure � is such that E[N(B)]=�(B)=∫
B

�(s) ds < ∞ for any compact Borel set B. The nonnegative
intensity function, when it exists, is given by �(s) = lim�(ds)→0 E[N(ds)]/�(ds), where �(·) is the Lebesgue measure.
When �(s) is not a constant, but a deterministic function of s, the process is termed nonhomogeneous (or inhomogeneous)
Poisson.

Since we want to test for change between two time periods, we let the criminal process be represented by a Poisson
marked point process defined on the product spaceX=A×K ,A ⊂ R2, K={1, 2}, whereA defines a bounded geographic
region of study where the events are observed and K defines the mark space representing the labels that the events
receive. The labels signify the time period in which the event occurred. The events are the set {(si , ki) : si ∈ A, ki ∈ K},
where each event is designated by a pair of coordinates, say longitude and latitude

(
i.e. si = (si,1, si,2)).

The feature space G, defines the additional feature information relating to the locations in the study region. Define
G(B) = {g(s) : s ∈ B}, where g is the function assigning the feature values to each spatial location. Then the values
of an event’s location in feature space can be designated by g (si ) = [g1 (si ) , g2 (si ) , . . . , gp (si )

] ∈ G where there
are p possibly mixed variables taking real (perhaps discrete), ordered, or categorical values. It is important to note
that the value g(s) is assumed to be a known function of location, so given any {s}, the value g(s) can be determined
without error. For example, a GIS (geographical information system) can be used to extract the feature values for a set
of events. A standard GIS is capable of calculating distances from the set of events to geographic objects (i.e. roads,
landmarks) and determining if an event falls within a boundary (i.e. census tract, neighborhood watch area). We assume
the geographically determined feature values are static within the study time horizon, that is, we are not considering any
of these features in which the values will change during the period under observation. This is not much of a concern for
features relating to distances which will rarely, if ever change. However, some other features (i.e. socio-economic) can
change slowly over time, so care must be taken in setting the time horizon of the study if these variables are included.

We have been implying that the values of the intensity function are dependent upon the feature values. However,
since only the s are needed to determine g(s), we will suppress the notation of g(s) in the intensity function:

�(s, k) ⇔ �(s, k; g(s)).

In a marked point process, the ground process N� = {si} represents the locations of all the events, regardless of mark,
and can constitute a point process of its own. A marked point process N has independent marks if, given the ground
process N� = {si}, the {ki} are mutually independent random variables such that the distribution of ki depends only on
the corresponding location si (Daley and Vere-Jones, 2003). Assuming independent marks, the intensity function of
the criminal process can be written as

�(s, k) = ��(s) · f (k|s), s ∈ A, k ∈ {1, 2}, (1)

where ��(s) is the intensity of the ground process and f (k|s) is the mark density. We observe a realization of the marked
spatial point process N in a geographical region A and record the events, over two time periods, as

� = [(s1, k1) , (s2, k2) , . . . , (sn, kn) , N(A, K) = n]
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and we wish to test the equivalence of the component processes N1 and N2 (where Ni = N(· × {i})) based on these
observations. If we assume the criminal point process N has a ground process that is nonhomogeneous Poisson with
independent marks, then it is completely specified by the intensity function given by (1). Thus, testing the equivalence
of N1, N2 can be carried out by testing the equivalence of �(s, 1), �(s, 2), ∀s ∈ A.

Note that the intensity of the spatial marked point process is actually dependent on the time period of the observations
in such a way that the spatial intensity is nondecreasing in the length of observation time. Since we wish to compare
intensities over two time periods which might not be of equal duration this necessitates a correction to each component
intensity. Let H (�i )=

∫
A

�(s, k= i) ds be the measure of the temporal effects in the time period �i , which could include
temporal trends. Thus, the following formulation will allow testing with unequal time periods or against some known
or assumed time trends in the intensity under the null hypothesis of no change

H0 : �(s, k = 1)/H (�1) = �(s, k = 2)/H (�2)

⇒ ��(s) · f (k = 1 | s)/H (�1) = ��(s) · f (k = 2 | s)/H (�2)

⇒ f (k = 1 | s)
f (k = 2 | s)

= �(s) = H (�1)

H (�2)
.

The parameter of interest, �(s), is only dependent on the ratio of the mark densities. In the case of equal time periods
(and no time trends), �(s) = 1 under the null. Under the alternative hypothesis, there exists a region B ⊆ A where the
ratio of mark densities deviates from the null

H0 : �(s) = H (�1)

H (�2)
∀s ∈ A,

Ha : �(s) =

⎧⎪⎨⎪⎩
	 �= H (�1)

H (�2)
∀ s ∈ B ⊆ A,

H (�1)

H (�2)
∀ s ∈ A\B.

(2)

The null hypothesis of no change in the intensity parameter anywhere in the study region A is tested against the
alternative of a change in intensity only in a subset B ⊆ A, by testing the parameter 	 within a region B.

After posing the problem in the form of the hypothesis test specified above, what remains is to (1) select an appropriate
test statistic to test the hypothesis, (2) specify how the region B for testing will be identified, (3) establish significance
testing and (4) evaluate the results. The first three will be discussed in Section 3. Section 4 details results from a
simulation study and Section 5 provides an example of applying this methodology to a data set involving breaking and
entering crimes in Richmond, VA.

3. Methodology

This section describes the methodology we take for detecting the local regions of change in the criminal or terrorist
point process. The method consists of selection of a test statistic, finding the possible regions where change could have
occurred, and testing for significance of the possible change regions. We select a generalized likelihood ratio statistic
for hypothesis testing. This statistic reduces to a function of the number of events of each type in region B. A modified
PRIM methodology (see below) is used to search for the most likely change regions. Finally, we use a Monte Carlo
approach via random labeling to estimate the p-value of the observed test statistic.

3.1. Likelihood ratio test

The generalized likelihood ratio test (GLRT) is used for testing the hypothesis given by (2). The GLRT is a composite
hypothesis test which has as its statistic the ratio of the likelihood of the observations under the two hypotheses where
the parameters are estimated by their maximum likelihood values. Let T be the GLRT statistic for a potential change
region B ⊆ A

T (B) = L
(
�H0

)
sup�∈
 L(�, B)

= L
(
�H0

)
L
(
�̂ML, B

) , (3)
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where � = [�(s ∈ B), �(s ∈ A\B)] and 
 ∈ [0, ∞]2. Therefore, �H0 = [H (�1) /H (�2) , H (�1) /H (�2)] and �̂ML =[
	̂ML, H (�1) /H (�2)

]
. Under the null, �(s) is specified uniquely, hence H0 is simple. However, Ha is composite with

�̂ including the maximum likelihood estimate of 	 ∈ [0, ∞] in region B. T (B) takes values in [0, 1]. Under H0, T (B)

will be closer to 1, so H0 will be rejected when T (B) is small (see Section 3.3).
Assuming independent marks, the GLRT statistic, given a realization � is

T (B) =
N1,2∏
i=1

⎡⎣ f
(
ki

∣∣si; �H0

)
f
(
ki

∣∣∣si; �̂ML

)
⎤⎦ , (4)

where N1,2 is the number of events of either mark in A. Since f (k = 1 | s) + f (k = 2 | s) = 1 for all s, this implies

f (k = 1 | s) = �(s)(�(s) + 1)−1,

f (k = 2 | s) = (�(s) + 1)−1. (5)

Rewriting (4) in terms of (5) leads to

T (B) =
N1,2(B)∏

i=1

⎡⎢⎣ �H0

(
�H0 + 1

)−1

�̂ML

(
�̂ML + 1

)−1

⎤⎥⎦
yi
⎡⎢⎣ (�H0 + 1

)−1(
�̂ML + 1

)−1

⎤⎥⎦
(1−yi )

= [�H0

]N1

[
1(

�H0 + 1
)]N1,2(B)[

N1,2(B)

N1(B)

]N1(B)[
N1,2(B)

N2(B)

]N2(B)

=
[

�H0 · N1,2(B)(
�H0 + 1

) · N1(B)

]N1(B)[
N1,2(B)(

�H0 + 1
) · N2(B)

]N2(B)

, (6)

where yi = 1 if ki = 1, Ni(B) = Number of i-labeled events in region B, and �̂ML = N1(B)/N2(B). As seen from (6),
T is only dependent on the number of events in region B; there is no dependence on the size of B.

3.2. Finding region B∗

The change region B defines the geographical subset of A where change has occurred in the intensity function of
the point process. For testing the hypothesis in (2), we must identify this region B. To do this, we could conduct our
search over the spatial region A. However, as previously mentioned, we want to be able to detect the changes in feature
space, because we assume that it is the values of these attributes that are influencing the actors’ site selection process.
Therefore, we do not search in geographic space only, but include feature space (i.e. we search over A × G) for the
region B∗ that provides the minimum value of T (B), thus providing the most likely candidate region for rejection of
the null. This procedure of searching for extrema regions for significance testing is termed scan process (Priebe et al.,
1997, 2001) or boundary crossing problem (Loader, 1991).

3.2.1. Scan process
In general, a scan process is used to detect significant clusters of events; that is, detecting local regions where the

number of events is elevated far beyond expectation, then testing the significance of the deviation while accounting
for multiple hypothesis testing (since we searched over all possible regions) (Glaz and Balakrishnan, 1999). The scan
process consists of creating a window, Wx , of some geometry (usually a convex set), moving this window over the
entire region of interest (∀x ∈ X), and calculating some score for each window, S (Wx). The multiple hypothesis
problem is resolved by only testing on the scan statistic, the maximum score over all windows searched. The scan
statistic, SS = supx∈X S (Wx), is dependent on the geometry selected for W. However, multiple window geometries
(size and shape) can be considered to allow detection when the geometry of the change region is unknown a priori
(Loader, 1991).
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We adopt the same process (with a few adjustments) to detect significant regions of change instead of clusters. Since
we want to find the minimum value, the scan statistic becomes the value of our GLR statistic at region B∗

SS(�) = inf
B∈B

T (B)

= T
(
B∗) , (7)

where B is the set of windows that we search over.
Since we are trying to detect change in the criminal or terrorist behavior process, we do not set these windows in

geographic space only, but include feature space (i.e. X = A × G). Additionally, since we do not know the possible
geometries of the change regions, we want inclusion of a broad number of geometries for calculating the scan statistic.
However, we generally assume in the alternative that there is only one change region so we will restrict the possible
change regions B to be connected sets in X, but without restriction on the size of the regions. Furthermore, we will
ease computational complexity by assuming the regions are also hyper-rectangles in the real variables. Since T only
depends on the number of events and not the size of the region, there is a finite search space when the number of events
in the study region is finite. However, when the number of events and features is high, searching over all possible
combinations is computationally expensive. We proceed by searching in a smart way to find good approximations to
the scan statistic. That is, we only search over a restricted set B′ ⊆ B and hope this set includes B∗, or a large portion
of it.

By including feature space in X, the potential change regions are the hyper-rectangles in feature space, geographic
space, or a combination of the two. A hyper-rectangle in feature space does not translate into a hyper-rectangle (or even
a connected set) when projected into geographic space. For example, consider as a possible change region the locations
less than distance d1 from a road and in a census tract with population greater than d2. While this is a rectangle in
feature space, the same region will appear as a line segment, with width d1, following the road networks only in census
tracts that are valued over d2 when viewed in geographic (or map) space. Thus, the identified change regions will not
take any specific shape in geographic space and a single change region (that is a connected set in X) might appear as
several disjoint sets when projected onto geographic space.

3.2.2. PRIM
We choose to use a modification of PRIM (patient rule induction method) as an expedient way to search for B∗,

thus the value of the scan statistic (Friedman and Fisher, 1999). PRIM handles high dimensional and mixed data well
and can easily be adapted to search for low values of T (B). PRIM finds the boxes (hyper-rectangular subregions for
real-valued variables) where the response (e.g. T) is low (or high).

We start with a box B1 = A × G that covers the entire study region. Our method proceeds by producing a series of
boxes, {Bc}, decreasing in size, by successively peeling away a subbox in such a manner that each new box Bc+1 has
the lowest value for T (Bc+1) among all possible subboxes. Let the box Bc contain N (Bc) events and {si ∈ �} be all
the events in both time periods. The candidate subboxes for peeling at each step are

b−
j,c (�c) = {si ∈ � : gj (si ) �gj (�c)

}
,

b+
j,c (�c) = {si ∈ � : gj (si ) �gj (1 − �c)

}
,

bm
j,c = {si ∈ � : gj (si ) = sj (m)

} (
if gj is categorical

)
for j =1, 2, . . . , p+2, with the construction gi(s)=si , i=(1, 2) for the two spatial coordinates and i=3, 4, . . . , p+2
for the p feature variables. The values gj (�c) and gj (1 − �c) are the �c-quantile and (1 − �c)-quantile of the gj values
for all the events within the current box, Bc, respectively. The �c ∈ (0, 1) dictates the size of the subboxes under
consideration for peeling at step c. There are p + 2 variables since we include the two spatial dimensions with the p

feature variables. When gj is a categorical variable, the set of subboxes
{
bm
j,c

}Mj

m=1
is available for peeling where Mj

indexes the categories still included in box Bc.
The optimal subbox for peeling at step c becomes

b∗
c = arg max

j∈{1,2,...,p+2}
�∈{+,−,m}

T
(
b
�
j,c

)
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for a given �c. This creates the new box Bc+1 =Bc\b∗
c . Peeling away the set with the largest T is equivalent to retaining

the new box with the smallest value of T.
We continue peeling until T can no longer be decreased beyond the minimum at step c. Since T is only dependent on

the number of events of each type, we can find the minimum possible value of T (from any given box) if we continued
peeling. It can be seen from (6) that the minimum value of T will occur when all the events have the same label. The
stopping rule becomes

if min

⎛⎝[ �H0(
�H0 + 1

)]N1(Bc)

,

[
1(

�H0 + 1
)]N2(Bc)

⎞⎠ � min
1,2,...,c

T (Bi) then

continue peeling
else

SS′ = min
i

T (Bi)

B∗′ = Bj∗ where j∗ = arg min
j

T
(
Bj

)
end if

The result of this peeling step is a single box in space X. After the peeling procedure, it is possible that the best
box can be made better with a pasting step. Additional events can be added (pasting) in a similar manner to peeling by
adding a subbox to B∗′

. That is, the final box becomes B̃∗ = B∗′ ∪ b∗
P , where b∗

P is the subbox that minimizes T out of
all eligible subboxes for the pasting step and S̃S = T

(
B̃∗). The class of eligible subboxes is defined as those boxes, of

any size, that extend the current box on one dimension (variable) but maintain the current box boundaries on all other
variables. For a categorical variable gj , the eligible subboxes are those created by adding the values not included in B∗′

.
One could imagine any number of modifications to this procedure such as incorporating pasting into the peeling

steps, or peeling nonorthogonally. The main concept is to estimate the true B∗ in a computationally simpler way than
searching combinatorially.

Although the patient rule helps to find the global optima, it is not guaranteed to find it. In fact different choices of
initial peels can lead to different final boxes. The peeling fraction �c is the parameter impacting the box succession.
The standard PRIM uses a constant, usually 0.05���0.10 (Friedman and Fisher, 1999). Since we are searching for
the global minimum we want to avoid entrapment in a local minimum. Therefore, we let �c be a variable and run PRIM
for J iterations each time modifying the values for the variable �c’s. This will create J values for B̃∗ and S̃S and we
hope one of these values is the global minimum. The final estimates lead to a test of significance of ŜS = minj S̃Sj for
change in region B̂∗ = B̃∗

j∗ , where j∗ = arg minj S̃Sj .
This method aims to detect the one region where change has most likely occurred. But what if there are multiple

disjoint regions of change? First, note that the value ŜS only depends on the events inside region B̂∗, so the presence
of multiple change regions in the area under study has no effect on identifying the top change region or on inference
(see below). One could consider removing the events in B̂∗ and repeating PRIM to identify the secondary regions of
possible change. However, the regions would not necessarily be hyper-rectangles (in X) and the test for change will
not be as powerful.

Since we wish to capture as many features as possible that influence the criminal or terrorist process we risk
choosing some features that are only noise. The PRIM shows some resistance to the disagreeable effects of including
noise variables. The final box may consist of some variables that were not used in the peeling process. This means the
same results would be obtained if those variables were not included in the initial evaluation. Thus, the nature of the
peeling process automatically excludes most of the noise variables from consideration.

3.3. Significance testing

Given a realization of the process, after finding the region B̂∗ and calculating the observed test statistic tobs =T
(
B̂∗),

we evaluate the evidence we have for rejecting H0 in the form of a p-value. The p-value of an observation is the probability
that under the null distribution of T you would get an observation as extreme (in this case as small) as what was observed

pobs = Pr
(
T � tobs; H0

)
,
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where H0 will be rejected if pobs �� for some significance level � ∈ [0, 1]. Small p-values will occur when tobs is
small.

Since the distribution of T under H0 is not known, a Monte Carlo test is used for significance testing. A Monte Carlo
test consists of generating M − 1 observations under H0, calculating the values of tm for each simulated observation,
m = 1, 2, . . . , M − 1, then estimating the p-value by the proportion of times tm � tobs.

We could generate the Monte Carlo observations by first estimating the intensities �(s, k = i), i = (1, 2) then
generating new event locations from this distribution (Kornak et al., 2003). However, intensity estimation will be very
complicated in the high-dimensional feature space we consider. Additionally, estimation of the intensity will introduce
an additional source of error. Fortunately, from (2), �H0 reduces to only a function of the mark densities, and is constant
over the entire study region, A. So we can produce new realizations of the point process by random labeling, that is
assigning for each event in the original realization �obs, a new mark according to (5).

The procedure is to generate realizations of the marked spatial point process by random labeling the observed event
marks under the null. Next, the values of the scan statistics, {(tm; H0)}M−1

m=1 , are calculated for each of these realizations
from PRIM. Order these observations,

{
tobs, tm

}
, from smallest to largest and let ln be the order of the nth observation.

The estimated p-value then becomes

p̂obs = lobs/M . (8)

This testing scenario adjusts for multiple hypotheses by testing on the value of the scan statistic. By reformulating the
change model so that the intensities are not being directly tested, we can generate realizations of the null very simply and
quickly by random labeling. This procedure provides a means to detect significant local changes in high-dimensional
point processes.

4. Simulated data

To evaluate the proposed methodology, we provide an example with simulated data. The estimated ROC and four
other measures are examined. We also evaluate the effects of the PRIM pasting step and random noise variables.

We examine a region A that is a unit square on [0, 1]2. Six features are identified for this region, in addition to the
spatial coordinates, so X = A × G, where G = [g1, g2, . . . , g6]. The features {g1, g2, g3, g6} represent distances to
certain landmarks (e.g. g1(s)= distance from location s to the nearest road). Features {g4, g5} represent values of some
variable recorded at the census tract level. Fig. 1 displays the values of the features in region A.

Next, we assume there are a group of insurgents operating in the region that consider three of the features of a location
when planning attacks. Specifically, we assume the insurgents attack according to a nonhomogeneous Poisson process
and their preferences dictate an intensity function given by

�1(s) = exp
(−cys2 − c1g1(s) + c5g5(s)

) · C1,

�r = 15, (9)

where cy =0.5, c1 =100, c5 =1, C1 =645.2. We assume some random attacks in the form of a homogeneous Poisson
process on A with rate �r that we associate with group 1. The expected number of group 1 events in A becomes

E [N1(A)] = �1(A) =
∫

A

(�1(s) + �r ) ds = 115.

Then we assume an additional insurgency group becomes active in time period �2. This second group has different
preferences for locations of attacks and operates independently of the first group. The second group’s intensity function
is given by

�2(s) = I (g2(s)�0.10, g3(s)�0.05, g4(s)�0.30) · C2, (10)

where I is the indicator function and C2 = 833.3. Fig. 2 shows the intensities of both groups mapped onto A.
Therefore, the region where change occurs is B∗ = {s : g2(s)�0.10, g3(s)�0.05, g4(s)�0.30} with a Lebesgue

measure of � (B∗) = 0.0424 (i.e. B∗ covers 4.24% of A). The expected number of insurgent attacks from group 2 is
�2(A) = 35. While the change region is a connected set in feature space, when projected onto A it can be seen that the
region of change consists of several disjoint geographic sets.
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Fig. 1. Feature values.

Thus, we have �(s, k =1)=�1(s)+�r for �1 and �(s, k =2)=�1(s)+�r +�2(s) for �2. Let the length of �1 = �2 and
assuming no temporal trends, according to the null hypothesis (2),�(s)=1 everywhere in A. To evaluate our methodology,
we generated 100 realizations of the point process specified by Eqs. (9) and (10) (MZller and Waagepetersen, 2004). For
each of these realizations we applied PRIM with �c ∈ [0.05, 0.15]. For each original observation, J (=500) iterations
were performed creating

{
S̃Sj , B̃∗

j

}
. And the minimum value of the scan statistic from the 500 iterations is retained,

ŜS = minj S̃Sj along with B̂∗ = arg minj B̃∗
j .

Next for significance testing, 99 simulations of the process under H0 are created. For each simulation, the la-
bels for the events are randomly assigned to �i , (i = 1, 2) with f (k = i|s) = 0.50, and J (=500) iterations of
PRIM are performed on each of these Monte Carlo observations. Then the estimates for the p-value are calculated
from (8).
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Fig. 2. Intensity function of (a) group 1, (b) group 2.
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Fig. 3. Example detection region projected onto A. The change region is specified by the peels listed in Table 1. This realization resulted in
R1 = 0.75, R2 = 0.54, R3 = 0.16, R4 = 0.83.

This results in a set
{
B̃∗

i , p̂i

}100

i=1
from which we can evaluate the methodology. This is performed under three

scenarios to compare the results obtained when using the pasting step, without the pasting, and by adding four U [0, 1]
random noise variables.

Let Ei (i = 1, 2) be the events from insurgency group i, with the random events assigned to group 1. We consider
p̂ and four other measures to evaluate the success of our method in capturing the true change region B∗, or the events,
E2 that constitute the change:

R1 = ∣∣{E2 ∩ B̂∗}∣∣ / |{E2}| —the proportion of group 2 events captured in B̂∗,

R2 = �
({

B∗ ∩ B̂∗}) /� (B∗)—the proportion of region B∗ captured by B̂∗,

R3 = ∣∣{E1 ∩ B̂∗}∣∣ / ∣∣{E1,2 ∩ B̂∗}∣∣—the proportion of the events captured in B̂∗ that are from group 1,

R4 = �
({

B̂∗\B∗}) /� (B̂∗)—the proportion of region B̂∗ that does not belong to B∗,

where | · | is the cardinality of a set and �(·) is the Lebesgue measure.
We are essentially considering two aspects of the change, the region where change occurs (R2, R4) and the events

(R1, R3) that constitute the change. Since PRIM is operating on the events only, it is assumed this method would do
better at capturing the events from group 2 than the region where they operate.
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Table 1
Example change region defined in X

Change region B̂∗

s1 0� s1 �0.9489
s2 0� s2 �1
g1 0.231�g1 �1
g2 0�g2 �0.2702
g3 0�g3 �0.0856
g4 0�g4 �1
g5 0.3932�g5 �0.7791
g6 0.1988�g6 �0.5900
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Fig. 4. Histogram of R1, R2, R3, R4 under pasting, no pasting, and added noise: (a) R1 and R2 under pasting; (b) R3 and R4 under pasting; (c) R1
and R2 under no pasting; (d) R3 and R4 under no pasting; (e) R1 and R2 with noise; (f) R3 and R4 with noise.
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Fig. 5. ROC curves based on R1: (a) ROC for Case 1: pasting; (b) ROC for Case 2: no pasting; (c) ROC for Case 3: noise.

Fig. 3 shows a typical detected change region from the simulation in geographic space, A and Table 1 shows the same
change region in X. The detected change region, B̂∗, contained 42 events marked �2 and only one marked �1 and an
estimated p̂ of 0.01. While both the true change region and the estimated change region are connected hyper-rectangles
in X, they are irregularly shaped disjoint sets when projected onto geographic space. Notice that B̂∗ covers a much
larger area that the true change region, including regions where no events occur. This is the result of searching for
change regions in feature space as opposed to only geographic space.

Fig. 4 displays the histograms for the values of R1 to R4 for the three scenarios: pasting, no pasting, and added noise.
Within each scenario, the values of R1 and R2 are similar to each other, showing that PRIM identifies about the same
proportion of new events as the change region. However, the values of R4 are much larger than R3 meaning that the
PRIM method identifies the events that constitute change accurately, but estimates a change region that encompasses
an area larger than the actual change region. It is also apparent that there is not much difference between the pasting
and nonpasting settings. While the values for R1 and R2 decrease without pasting, R3 and R4 increase. However, both
increase and decrease appear minimal. It is also apparent the addition of the noise decreases the values of R1 and R2
and increase the values of R3 and R4. This will hinder the ability of the method to detect significant change. We will
evaluate this further in the following.

We next consider the receiver operating characteristics (ROC) for probability to detect (PD) a significant region and
�, the significance level. A detection is declared if p̂�� and either R1 �d or R2 �d where d ∈ [0, 1]. The restriction
on R1 and R2 ensures that the region identified includes some part of the true change region. Fig. 5 shows the ROC
curves for d = {0.3, 0.4, 0.5} under each of the three scenarios.

The ROC evaluates two aspects of the methodology: the ability of PRIM to identify B∗ and the ability of T and
random labeling to detect departures from the null. Notice from Fig. 5 that PD does not go to 1 as � → 1. This is
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because there will be some occasions where R1 or R2 < d . In these cases, PRIM fails to detect enough of the change
region. Additionally, even if PRIM identifies a good portion of the change events or change region, the use of the T
statistic and random labeling might not provide a low estimate of p̂.

This shows that, for this synthetic model, PRIM fails to specify a large percentage of the actual change region or
change events about 1% of the time with pasting, 4% of the time under no pasting, and 5% with noise when d = 0.30.
If the intensity of the change is great enough, capturing only a small portion of the overall change region will still
result in a declaration of a significant change region. Additionally, this method does best at capturing the events that
constitute the change, but seems to overestimate the region where change occurs.

If the change does not occur until some time into �2, or if �2 is not large, there might be no significant regions of
change found. However, by providing p̂ and B̂∗ this method can also be used in an exploratory nature by identifying
the potential regions or events of change that will lead to further investigations.

5. Results

In this section we provide results from a criminology data set. We examine the location of breaking and entering
crimes in Richmond, VA. Here we seek to discover if there is a different pattern between the crimes that occur during
the summer and the rest of the year.

5.1. Breaking and entering crime locations

We evaluated residential breaking and entering (B&E) crimes reported in Richmond, VA in 1997. There has been
some evidence that there is an elevation in property crimes during the summer months in accordance to the routine
activities (RA) theory of crime (Cohn and Felson, 1979; Cohn and Rotton, 2000; Hipp et al., 2004). The RA theory
suggests that the conditions for crime include a motivated offender, a suitable target, and an absence of guardian against
crime. People tend to spend more time out of the home due to vacations or activities and more windows are left down in
the summer months. The increase in B&E crimes can then be explained by an increased opportunity for the criminal to
find such properties left without supervision and easily accessible. Additionally, juveniles will be out of school during
this time increasing the number of possible offenders. We provide an illustrative example of how our methodology can
be used to examine hypotheses related to the possibility that a different or additional group of criminals operates during
these summertime conditions.

The residential B&E crimes for 1997 were partitioned into summer crimes (1 June–15 September) and nonsummer
crimes (1 January–31 May, 16 September–31 December). With 107 days in summer and 258 days in the rest of the year,
we must adjust for the inequality in length of the time periods. Assuming no temporal trends, the ratio H (�1) /H (�2) is
proportional to the ratio of the lengths of the time periods (=107/258 days). Thus under the null, �(s)=0.4147 ∀s ∈ A.

To test for change regions, the analysis considered 27 spatially specified features (including proximity measures and
census values) along with the two spatial coordinates (see Table 2). All feature values were obtained from a GIS with the
1997 estimates of the census features taken from Census_CD+Maps (1998). We applied PRIM with �c ∈ [0.05, 0.15].
The procedure was performed 500 additional times, creating

{
S̃Sj

}
.And the minimum value of the scan statistic from the

500 iterations is retained, ŜS =minj S̃Sj . For significance testing, 999 simulations of the process under H0 are created.

Table 2
Proximity and socio-economic features used for B&E analysis

Proximity features
Dist_Intersection Dist_RrhaOwned Dist_TrafficLight Dist_Ramp
Dist_BusStop Dist_PoliceSta Dist_TrPark Dist_PlWorship
Dist_Shopping Dist_Offices Dist_School Dist_Mall
Dist_Industrial Dist_HistLand Dist_CommunityCent Dist_Bridge

Socio-economic features
Tot_Pop %Non_White %Male_under_40 %Non_Native
%Working Median_HH_Income Total_HH %Vacant_HH
%Rentals Avg_Pop_HH Med_Value_HU
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Fig. 6. Significant change location in spatial view (shaded region). When projected onto geographic space, the connected set in feature space becomes
disjoint.

Table 3
Change region in X

Change region B̂∗

s1 281367� s1 �–
s2 4154920� s2 �–
Dist_Intersection 19.6�g1 �55.7
Dist_TrafficLight 16.5�g2 �–
Dist_TrPark 6219�g4 �–
Dist_Shopping 853�g5 �5918
Dist_School 340�g6 �680
Dist_RrhaOwned –�g7 �1522
Dist_PoliceSta –�g9 �2105
Dist_PlWorship 78.1�g10 �782
Dist_Mall –�g12 �4487
Dist_Industrial –�g13 �2926
Dist_HistLand –�g14 �1301
Dist_CommunityCent 335�g15 �–
Dist_Bridge –�g16 �2656

No socio-economic features were used by PRIM. All distances are in meters and the spatial coordinates are UTM.

For each simulation, the labels for the events are randomly assigned to �i , (i = 1, 2), with f (k = 1|s) = 0.293, and
500 iterations of PRIM are performed.

For the original observation, log tobs was found to be −35.4175 in a region B̂∗ where there were 76 events from �1
and 36 events from �2. PRIM peeled 24 times on 15 different features to find this region. B̂∗ consisted of approximately
1.3% of the total area of A. In this case, 19 of the simulated observations were less than log tobs, so the estimated p-value
of the observation is 0.019, and we can reject H0 and conclude a change in the intensity has occurred in region B̂∗
between time periods �1 and �2. Fig. 6 shows B̂∗ as the shaded region in A. Table 3 shows the change region in feature
space.
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The change was caused by an elevation in the number of summertime crimes over what was expected given the
non-summertime crimes in the identified region B̂∗. While under the null, �(s)=0.4147, the estimate of �(s) for region
B̂∗ is �̂(s | s ∈ B) = �̂ML = 76/36 = 2.111. This identifies the ability of this method to identify even small regions
that constitute a change in the process. As seen from Fig. 6, when the change region is projected onto the geographic
space, the change region is composed of several disjoint spatial regions and all of these subregions are in close spatial
proximity to each other. While this could suggest the possibility that an additional group of criminals was active in
this region during the summertime, this analysis alone cannot provide certain evidence. Although it would have been
interesting to further investigate the possible causes of this change, this was unfortunately not possible. Certainly an
evaluation of the crime reports of the B&E crimes that occurred inside the change region of B̂∗ or an examination of the
arrests records from the B&E crimes in 1997 could help confirm this conjecture; unfortunately this was not possible.

However, this method does provide a list of crimes
({

si ∈ B̂∗}), and regions B̂∗, in geographic space (Fig. 6) and
feature space (Table 3), that can be further investigated by crime analysts to determine if a new criminal group was
active during this period of time (or to test other possible hypotheses).

6. Discussion and conclusions

This method provides an approach for detecting local change regions in a stochastic point process on a plane where
the locations of the points are driven by intelligent site selection. We have only presented examples where the changes
occur between two time periods, but the same method would apply for detecting differences between two types of
events or in case–control data (the marks signify the types of events rather than the time period).

We detect change regions in the feature space corresponding to the predictor variables that are thought to influence
the criminal or terrorist process. The change regions can then be projected back onto geographic space as in Fig. 6.
By searching for change in feature space in addition to the spatial coordinates, it is clear that this method can detect
the change regions that may not be detected under a spatial analysis alone. An additional advantage is that no a priori
knowledge on the size or geometry of the change region is required.

By only testing for one connected set of change, this test is very similar to the use of the traditional scan statistic
for detecting spatial clustering (Kulldorff, 1997; Glaz and Zhang, 2004). In the traditional approach the search is
over all possible connected sets of some geometry. Patil and Taillie (2004) show an alternative of finding the elevated
regions where change has potentially occurred based on upper level sets. However, the events are required to be
aggregated into a finite number of geographic cells for the analysis. The key difference here is that we have high
dimensional, possibly mixed variable data which is not aggregated. As the number of events increase and especially as
the number of variables increase, it becomes computationally infeasible to continue searching over every possible set.
Therefore, in these occasions we propose the use of an approximation to the value of the scan statistic by means of the
modified PRIM.

Furthermore, our test statistic (5) is very similar to those used in the spatial cluster detection methods. The GLRT
used in spatial cluster detection compares the rate of event initiation inside the potential change region to the rate
outside this change region. Since we are testing between two time periods (or types of events), we compare the rate of
event initiation in a potential change region for one time period (or event type) to the rate in the same change region,
but in the other time period (or event type).

By specifying the hypothesis test in terms of the ratio of mark densities, we are able to approach the inference
problem by performing Monte Carlo simulations of the null process with random labeling, thus avoiding the complicated
procedure and induced error of estimating the underlying intensities.

In this paper, we have concentrated on finding only one hyper-rectangular region (in feature space) of change.
However, the PRIM approach could be extended to find other geometries or even multiple regions of change. After
finding the first B̂∗, remove the events that fall inside this region. Then repeat PRIM resulting in another region, B̂∗

(2).
This can be continued until the space A is contained in the union of boxes or until some number or value of boxes
is obtained. By combining overlapping regions, one connected but nonhyper-rectangular set can be identified for a
possible change region. Or several disjoint regions can be tested as multiple change regions. Of course in this case, the
hypothesis must be adjusted to incorporate the new assumptions.

When considering change detection, especially in the intelligent site section problem, it must be assumed that a
change in the process could be in the form of new variables being considered. For example, in our example of crime
or terrorism, the change might be in the form of a new decision maker that considers features that were not considered
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by anyone in the first time period. If any sort of feature selection is used, the features identified as relevant must come
from the union of relevant features in each time period.

We are currently investigating extensions to this approach. Other potential application areas include anomaly de-
tection, syndromic surveillance, and detecting changes in transportation patterns. Also, we have not considered the
geographical features that vary temporally. However, such features could be very relevant in the analysis. For example,
the actual locations and times of police or military patrols could have a profound effect on locations and number of
crimes. We are examining the extension of this approach to capture the temporally varying geographic features.
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