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One aspect of tactical crime or terrorism analysis is predicting the location of
the next event in a series. The objective of this article is to present a methodol-
ogy to identify the optimal parameters for and test the performance of tempo-
rally weighted kernel density estimation models for predicting the next event
in a criminal or terrorist event series. By placing event series in a space-time
point pattern framework, the next event prediction models are shown to be
based on estimating a conditional spatial density function. We use temporal
weights that indicate how much influence past events have toward predicting
future event locations and can also incorporate uncertainty in the event tim-
ing. Results of applying this methodology to crime series in Baltimore County,
MD indicate that performance can vary greatly by crime type, little by series
length, and is fairly robust to choice of bandwidth.

Keywords: next event prediction, prospective, temporally weighted kernel density, point
process, crime series, terrorism, aoristic analysis

1. Introduction

The objective of this article is to present a methodology to identify the optimal pa-
rameters for and test the performance of temporally weighted kernel density estimation
(KDE) models for predicting the next event in a criminal or terrorist event series. We
describe how event series can be viewed in a space-time point pattern framework and
how next event prediction models are based on estimating a conditional spatial density
function. The temporal weights indicate how much influence past events have toward
predicting future event locations. Uncertainty in the event times is incorporated in the
temporal kernels.
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Criminal and terrorist event point patterns often exhibit spatial and space-time clus-
tering (Bowers and Johnson 2005, Braithwaite and Johnson 2012, Grubesic and Mack
2008, Short et al. 2009, Townsley et al. 2003, Youstin et al. 2011). This could be due
to the event initiators’ limited awareness space and routine activities (Brantingham and
Brantingham 2008), their particular site selection behaviors (Johnson et al. 2009), or the
clustering of attractive targets or victims (Brantingham and Brantingham 1995). Events
that are close in both space and time are termed near-repeats and the explanations for
them are a topic of much research (Bowers and Johnson 2004, Johnson 2008, Pitcher
and Johnson 2011, Short et al. 2009). The two primary explanations for the presence of
near-repeats are termed the flag account and boost account. Simply stated, the flag ac-
count explains near-repeats as a result of certain locations or regions being attractive or
accessible to the general population of offenders. Such near-repeat events are caused by
multiple offenders choosing their locations independently. The boost account describes
near-repeats as a contagion process where one offender (or their associates) initiates
several events in close space-time proximity as their awareness space and knowledge of
targets grows with each successful event (e.g. due to optimal foraging (Johnson et al.

2009)).
Several studies of crime activity offer support to the boost account and provide evidence

that that near-repeats can often be attributed to the same offender (Bernasco 2008,
Bowers and Johnson 2004, Johnson et al. 2009). This is important for event prediction as
it indicates that an individual’s event series should also display space-time clustering. The
concept of near-repeats has also been extended to consider clusters of events (e.g. poly-
order chains and microcycles) that are close in space and time to each other (Behlendorf
et al. 2012, Johnson and Braithwaite 2009), however these have not yet been investigated
for common offender involvement.
The presence of space-time clustering and near-repeats in many criminal and terrorist

event processes has prompted research into predictive models incorporating these aspects.
Space-time kernel based methods have been used to weight more recent events (Bowers
et al. 2004, Johnson et al. 2008) or events that occurred during certain time periods
(Tompson and Townsley 2010) more heavily. By mixing background attractiveness and
near-repeat behavior, self-exciting models (Johnson et al. 2008, Lewis et al. 2011, Mohler
et al. 2011, Porter and White 2012) attempt to incorporate both flag and boost aspects
into a predictive model. Rey et al. (2011) uses Markov models to jointly model the
evolution of crime rates across discrete space and time cells allowing forecasts to be
made based on recent local event activity. In line with the flag account, other models
attempt to directly model the relationship between crimes and the spatial environment
(Bernasco and Block 2009, Huddleston and Brown 2009, Kennedy et al. 2011, Liu and
Brown 2003).
While there are a number of models for predicting the locations of aggregated crim-

inal and terrorist events, there are few for predicting the location of the next event in
a series. Using attacks by the ETA terrorist group, LaFree et al. (2012) examined how
often the next event was in the same, adjacent, or non-adjacent provinces. They found
evidence that the time between attacks and location of previous attacks influenced these
probabilities. Correlated walk analysis (Levine 2010) attempts to model the trajectory of
a crime series assuming that the offender follows a type of random walk that allows for a
consistency or momentum in the current direction and speed of travel. Another alterna-
tive, and one we pursue in this paper, is to adapt the temporally weighted kernel density
methods used for prospective hot-spotting (Bowers et al. 2004, Johnson et al. 2008) for
next event prediction. Towards this end, Paulsen (2005, 2011) developed a temporally
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weighted density procedure for next event prediction that uses a spatial bandwidth based
on the mean nearest neighbor distance and event weights based on the time since the first
event in the series. Paulsen (2005) found that the kernel method outperformed several
other prediction methods, including the correlated walk analysis, on crime series data.
Based on the findings of Paulsen (2005), their use in prospective crime mapping, and

their applicability to small data sets, we consider temporally weighted kernel density
models for estimating the location of the next event in a series. We develop a framework
for kernel-based next event prediction that explicitly shows how the proper choice of
temporal weighting function results in an estimator for the conditional spatial density of
a space-time point process. In addition, we provide a method to incorporate uncertainty
of the event timing into the temporal weighting function. Because there is little guidance
for selecting the space-time bandwidth parameters, we explore the effects of different
bandwidths on performance across several event types and sizes in a set of crime series
in a US county.

2. Kernel Based Next Event Prediction

The spatial location and timing of events in a series can be viewed as a space-time point
pattern (i.e., a realization from a space-time point process). The intensity λ(t, s) of a
space-time point process represents the event rate at a specific time t and location s.
The space-time intensity can be decomposed into

λ(t, s) = µ(t) · f(s|t) (1)

where µ(t) is the overall temporal rate and f(s|t) is the conditional density1 of an event
occurring in location s given that an event occurs at time t. In this framework, µ(t)
controls the number and timing of events and f(s|t) controls the location of any events
occurring at time t.
The goal of next event prediction is to accurately identify the most probable locations

(and times) of future events. More fundamentally, this implies a goal of estimating the
components of intensity at future times. When focus is on the timing of events (e.g.,
time of day, day of week, time until next event), estimation is concerned with µ(t).
Alternatively, when focus is on the location of events, then estimation is concerned with
f(s|t). We focus on the spatial locations of future events of a series and thus concentrate
on estimation of the conditional spatial density f(s|t). This is appropriate for determining
where resources should be deployed at a given time t.

2.1. Spatial KDE

While the representation of the intensity in (1) clearly distinguishes between the spatial
distribution and temporal rate, both components are conditional on a given time t. A
special case arises when the spatial distribution is independent of time i.e., f(s|t) = f(s).
When this is assumed, the intensity is said to be separable (Schoenberg 2004) or lack
space-time interaction (Grubesic and Mack 2008). A separable intensity is convenient as

1For a given time t, f(s|t) ≥ 0 is a probability density function (pdf) for continuous space (
∫
f(s|t) ds = 1) and a

probability mass function (pmf) for discrete space (
∑

f(s|t) = 1)
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each component, µ(t) and f(s), can be estimated separately which greatly reduces the
complexity of the models.
Using kernel density estimation (KDE) to estimate the conditional density under the

separability assumption is equivalent to a regular spatial density estimate (i.e., retrospec-
tive KDE) where time is not incorporated. Suppose that a current series is comprised of
n events with locations {s1, s2, . . . , sn}. Ignoring time, a fixed bandwidth spatial KDE is
of the form

f̂(s) =
1

n

n
∑

i=1

K(‖s− si‖; θs) (2)

where K(·) is the kernel, ‖ · ‖ is a distance function (e.g., Euclidean), and θs > 0 is the
spatial bandwidth. The spatial kernel function is a zero-mean two-dimensional probability
density function (e.g., bivariate normal centered at zero) and the bandwidth controls the
spread of the kernel’s density. The bandwidth acts as a smoothing parameter with larger
bandwidths corresponding to smoother density surfaces. The quality of the resulting
density estimation depends greatly on the choice of bandwidth.
While many spatial kernels are possible, we review two of the most common: Gaussian

and quartic. The isotropic 2D Gaussian kernel is the product of two univariate Gaussian
density functions with standard deviation of θ

Kg(u; θ) =
1

2πθ2
exp

(

−
u2

2θ2

)

(3)

for a distance of u. Notice that the Gaussian kernel provides a strictly positive value
for any distance u. This is in contrast to the popular quartic (or biweight) kernel which
assigns zero values to any distances that exceed a certain range (Gatrell et al. 1996).
Specifically, the quartic kernel can be expresses as

Kq(u; θ) =











3

πθ2

(

1−
u2

θ2

)2

u ≤ θ

0 u > θ

(4)

where the bandwidth for the quartic kernel is taken to be the range of the kernel’s
domain.
One issue in comparing the Gaussian and quartic kernels is that the bandwidth refers

to different aspects of the kernel’s shape. Figure 1 illustrates how the bandwidth pa-
rameters for the Gaussian and quartic kernels do not lead to similar kernel functions.
Because the bandwidth of the quartic kernel dictates the support of the kernel and the
bandwidth for the Gaussian kernel is its standard deviation, a scaling is needed to put
the two resulting kernels on a more equivalent comparison. For example, multiplying the
bandwidth of a quartic kernel by 2.623 makes it comparable to a Gaussian kernel of the
original bandwidth (Härdle and Linton 1994).

2.2. Prospective KDE with Temporal Weighting

The purely spatial KDE given in (2) weights all past events equally by 1/n. Thus, the
location of the next event in the series is just as likely to be close to the first event as it is
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Figure 1. Spatial kernel functions. The black line corresponds to the 2D Gaussian kernel (3) with
θ = 100, the red line is the quartic kernel (4) with θ = 100, and the blue line is the quartic with
adjusted bandwidth of θ = 262.

to the most recent. This implies that the event initiator does not adapt or modify their
site selection behavior over time. Alternatively, an initiator exhibiting foraging behavior
may select sites closer to their more recent events (Johnson et al. 2009, Johnson and
Bowers 2004).
To allow for the possibility of drift in the series locations, a prospective conditional

density estimate can be created using temporal weights that are a function of the time
since the previous events. The temporally weighted KDE can be expressed

f̂(s|t) =

nt
∑

i=1

wi(t) ·K(‖s − si‖; θs) (5)

where nt are the number of historic events available at time t and wi(t) is the weight of
the ith event at time t. To ensure that (5) is a proper spatial density, the weights must
be non-negative and add up to one for all t (i.e. wi(t) ≥ 0 and

∑nt

i=1 wi(t) = 1 ∀t).
When the weights are all equal (i.e. wi(t) = 1/nt), (5) reduces to (2) and the time since

the previous events has no influence on future event locations. Alternatively, weights that
decrease as a function of the time since prior events imply that the event initiator is more
likely to return to the regions around recent events (or has a short memory).
We consider weights to be rescaled density functions. For example, we consider weights

wi(t) = g(t−ti; θt)/
∑nt

j=1 g(t−tj; θt) where g(u; θt) is a proper univariate density function

with non-negative support (e.g. exponential, gamma) and temporal bandwidth parameter
θt > 0 such that larger values correspond to more equal weightings. This is equivalent to
a regular space-time KDE, but with rescaled and one-sided (predictive) temporal kernels.
While not well established for next event prediction, models in the form of (5) are not

new to spatial event forecasting. Bowers et al. (2004) and Johnson et al. (2008) used an
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inverse distance weighting for both the temporal and spatial kernels:

wi(t) ∝
1

1 + (t− ti)
(6)

K(u) ∝
1

1 + ‖s − si‖
(7)

Although the resulting spatial density is not proper in the sense that it does not integrate
to one over the spatial domain, this does not change the resulting rank of a location’s
density compared to all other locations. Thus, multiplying by a constant will restore
these estimates to a proper spatial density function. Equation (5) is also proportional to
the self-exciting component of Mohler et al. (2011).

2.3. Temporal Uncertainty

An additional challenge with crime and terrorism data is that the actual event time is
often unknown and all that is available is a time window when the event could have
occurred. In the spirit of aoristic analysis (Ratcliffe 2000, 2002), we can calculate the
weight as an expected density assuming that the true event time is uniformly distributed
within the time window. Assuming the time window of event i is [αi, βi] and using the
temporal kernel g(t− ti), the weight is given by

wi(t) ∝ E[g(t− ti)] (8)

=
1

βi − αi

∫ βi

αi

g(t− u) du (9)

=
1

βi − αi
[G(t− αi)−G(t− βi)] (10)

where G(u) is the cumulative distribution function (cdf) of the temporal kernel g(u).
This is very simple to calculate when there is a closed form available for the cdf.

3. Data and Methodology

In order to investigate the impact of the KDE parameters on next event prediction, an
evaluation of crime series data was carried out. For each crime series, a time weighted
KDE (5) is used to predict future events using a range of spatial and temporal band-
widths. The quality of the predictions is based on how much area needs to be monitored to
detect the next event. This allows comparison by offender, crime type, and series length.
All of the calculations were performed using the freely available statistical programming
language R (R Development Core Team 2011).

3.1. Study Area

The study region is Baltimore County, Maryland in the US and a surrounding buffer
region. Baltimore County has a land area of 598.30 square miles (1549.5 km2), a 2010
population of 805,029, providing a population density of 1345.5 persons per square mile,
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an average of 561.0 housing units per square mile, and an average of 2.47 persons per
household (U.S. Census Bureau 2011).

3.2. Crime Data

The Baltimore County Police Department provided crime data consisting of detected
crimes with geocoded locations, the time interval in which the crime could have oc-
curred1, crime type, and an anonymized offender identifier. The data came from the
Regional Crime Analysis Program (RCAP) which facilitates the sharing of crime data
across jurisdictional boundaries. As such, some crime events were located outside of Bal-
timore County, but as they were suspected to be part of a series occurring inside the
borders of the county, they were included in the data set and subsequently used in our
analysis. This diminishes the impact of edge effects (i.e. not observing events that occur
outside of the study region) which could impact the results for the crime series that occur
close to the county border. The RCAP data consists primarily of breaking and entering,
robbery, and motor vehicle theft crimes.
Seven hundred and forty two initial crime series (attributed to a common offender) were

extracted for analysis. Each series consisted of four or more crimes that were committed
between 1999 and 2011. Crimes with invalid geocoded locations or time intervals were
excluded from the series2. In addition, only the crimes that occurred within 365 days
from the last recorded event were included in analysis. The period was limited to one year
to prohibit long stretches between crimes and guard against offenders changing anchor
points during the period of analysis.
By using the crime series as the unit of analysis, crimes with more than one offender

can appear in multiple series. To guard against biasing the results by including series
that are too similar, series that shared over 50% of their crimes with another series where
removed from analysis. This eliminated 152 series and provided 590 series for analysis.
Figure 2 shows Baltimore County with the location of the 4151 crime events from the
590 crime series analyzed.

3.3. Predictive Kernel Density Estimation

Estimating the conditional density f̂(s|t) using the prospective kernel of (5) requires
a choice of spatial kernel and temporal weighting function along with corresponding
bandwidth parameters. The 2D isotropic Gaussian density function, given in (3), was
used for the spatial kernel. The spatial bandwidth (i.e. standard deviation) ranged from
100 meters to 2 kilometers (i.e. θs ∈ {100, 200, 400, 600, 1000, 2000}). If a small spatial
bandwidth predicts well, it implies that an offender chooses their next crime site in close
spatial proximity to their previous site selections. Large bandwidths, contrarily, will
perform best for offenders that have a large target range, or rarely return to locations
close to previously selected sites.
An exponential density function was used for the temporal weighting function. The

temporal bandwidth (i.e. mean of the exponential distribution) ranged from 3 to 100
days. Also included are the special cases of giving weight only to the most recent event

1Because many crimes types (e.g. breaking and entering, motor vehicle theft) occur when the victim is not present,
the exact timing of the crime cannot be ascertained. For such crimes, victims indicate the likely interval of time
during which the crime could have occurred.
2About 11% of all crimes during this period lacked a valid location or time interval.
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Figure 2. Map of Baltimore County, MD with the location of crime events from the 590 analyzed
crime series from 1999–2011. The density layer was made using kernel density estimation with
a Guassian spatial kernel with bandwidth of 400 meters. Baltimore County surrounds, but does
not include, Baltimore City.

(the limiting behavior as the bandwidth goes to 0) and to all previous events equally
(the limiting behavior as the bandwidth goes to ∞). Specifically, we considered temporal
bandwidths θt ∈ {0, 3, 7, 14, 21, 28, 35, 60, 100,∞}. Weighting only the most recent event3

represents a type of random walk where the offender only retains knowledge of the last
location. Alternatively, the infinite bandwidth causes all previous weights to be equal (i.e.
1/n) and the fully retrospective KDE of (2) is used to predict the next event location.
This assumes space-time separability and would be appropriate if the offender retained
full knowledge of all previous event locations and was equally likely of returning to the

3This may be multiple events if they share the same time interval.
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region surrounding any of them.
The Gaussian kernel was selected due to its popularity as well as its property of having

infinite support1. This is an advantage over the quartic kernel, which has limited support,
since all locations (even those far from previous events) receive a non-zero score. This
prevents ties (of zero values) in the estimated density which can complicate evaluation.
The exponential density was selected as the temporal kernel due to its simplicity, famil-
iarity, and to emphasize that it is a one-sided (predictive) kernel. In general, the choice
of kernel function is not as important as the choice of bandwidth (Gatrell et al. 1996,
Scott 1992) and so we expect that the use of other kernel functions would have little
impact on the results. The bandwidth values were selected to span the reasonable range
of possible values.

3.4. Predictive Evaluation

Each crime series contains n recorded crimes at spatial locations {s1, s2, . . . , sn} with
time intervals {[α1, β1], [α2, β2], . . . , [αn, βn]}, where αi is the earliest possible time and
βi is the latest possible time of crime i. The indices are ordered by αi. A prediction of
the kth event location is made for k ranging from 4 to n to explore the effects of more
information on prediction accuracy and optimal parameters.
Because the exact event times are uncertain, we predict the conditional density for

event k using the earliest time αk. It is important to only include historic information
that would be available to analysts in the predictive model. Thus, for predicting the
location of event k, only the events that occurred (i.e. had the latest possible time) at
least one day prior to event k were included. Thus, only the events {i : αk − βi ≥ 1 day}
were used for predicting event k. This allows 24 hours from the latest possible event
time for the crime to be reported, identified as part of the crime series, and used for
prediction. This is an important consideration as multi-event days are often comprised
of crime sprees sharing very close spatio-temporal proximity (often same location, same
time) that could artificially lower the optimal kernel bandwidths.
A fine regular grid with 50 meter spacing2 was overlaid on the study area (extending

up to 4 km beyond the county border) and the density estimated at the grid points

only. Thus, for a given spatial bandwidth θs and temporal bandwidth θt, f̂(s|αk) is the
prospective kernel estimate of the conditional density at grid cell s for the kth event.
Letting sk denote the closest grid point to event k and S the spatial grid points, the
required monitoring region to capture event k is the set of grid cells that have a higher
predicted density than the cell that contains event k i.e.,

Mk = {s ∈ S : f̂(s|αk) ≥ f̂(sk|αk)}

The area of the required monitoring region (in square kilometers) is the evaluation cri-
terion. This is termed the search efficiency in Bowers et al. (2004) and corresponds to
how much spatial area must be covered to detect the kth event. Small monitoring regions
correspond to accurate predictions.

1The support of a kernel is the set of input values that receives a non-zero output density.
2The grid was created using Euclidean distances in a UTM projection for zone 18.
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3.5. Illustration

To illustrate how the temporally weighted kernel density method is used for next event
prediction, consider the example provided in Figure 3 that has 5 prior events. The series
data is given in Table 1. Figure 3(a) shows the density surface for a 200 m spatial
bandwidth and ∞ temporal bandwidth (i.e. all prior events are weighted equally). This
bandwidth pair is optimal (i.e. it minimizes the required monitoring region) for this
series. Figure 3(b) reduces the temporal bandwidth to 14 days. Notice that only the
most recent two events (4 and 5) get significant weight. Figure 3(c) reduces the temporal
bandwidth further to only 3 days. This causes event 5 to have the majority of the weight
and provide the strongest contribution to the spatial density estimate. If the temporal
bandwidth was further reduced to 0, all the weight would be with event 5 driving the
spatial density estimate to be a 2D Gaussian centered at event 5. Figure 3(d) leaves
the temporal bandwidth at 3 days, but increases the spatial bandwidth to 400 meters.
This produces a very smooth density surface with only one peak. For this series, the
parameters in 3(a) and 3(b) produce a 5 km2 monitoring region that contain the next
event, while the parameters in 3(c) and 3(d) would require a larger monitoring region to
contain the next event in the series.

Event Longitude Latitude α β

1 -76.519 39.260 0.00 2.19
2 -76.516 39.255 0.25 1.12
3 -76.521 39.255 3.00 4.84
4 -76.521 39.254 32.25 32.50
5 -76.520 39.260 36.92 36.92

6 -76.517 39.254 40.88 40.88

Table 1. Example series data. Events 1–5 are used to predict the location for event 6. The earliest (α)
and latest (β) possible event times are in number of days from the first event.

4. Results

We partitioned the 590 crime series by crime type. Because about 28% of the crime series
included multiple crime types, we classified a crime series to be of a certain type if the
fraction of crimes of that type in the series exceeded 75%. Otherwise, the crime series
was classified as mixed. Furthermore, we considered analyzing the next-event predictions
according to the number of prior crimes available. A short history consists of 3-5 prior
events, medium 6-8, and long histories have more than 9 prior events available for predic-
tion1. Table 2 shows the number of series of each crime type that contain short, medium,
and long histories. Notice that the columns of Table 2 do not add up to the total. This
is because some series contain crimes that can be predicted from multiple history sizes.
For example, for a crime series consisting of 10 crimes, all separated by at least one
day, crimes 4-6 are predicted from short histories, crimes 7-9 are predicted from medium
sized histories, and the 10th crime is predicted from a long history. Thus, this series will

1The choice of these values for history length was rather arbitrary. However, as Figure 5 shows, the impact of
series length appears to be minimal.
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Figure 3. Illustration of temporally weighted kernel density estimation for next event prediction.
The size of the prior event symbol is proportional to its weight and the solid black line outlines
the 5 km2 monitoring region.

contribute to each row. In total, there were 299 breaking and entering, 194 robbery, 35
motor vehicle theft, and 62 mixed2 crime series.

Breaking &
Robbery

Motor Vehicle
Mixed All

Entering Theft

Short (3-5) 254 166 28 57 505
Medium (6-8) 93 58 7 11 169

Long (9+) 62 27 1 3 93

Total 299 194 35 62 590

Table 2. The number of crimes series by type and series history length. Because longer crime series may
contribute to several history lengths the Total row does not equal the column sums.

To prevent long series from having too much influence on the results, we averaged the
performance of each series within the history length. For example, if a series had three
crimes that were predicted with a short history, then the average performance over those
three crimes were used for evaluating the short history for that series. This treats each
series equally so comparison can be made at the offender level rather than biased towards
those with long series.

2No one crime type exceeds 75% of the series.
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4.1. Optimal Bandwidth

First, we evaluated the performance of kernel based next event prediction using the
optimal bandwidth parameters. That is, for each predicted crime we found the spatial and
temporal bandwidths that would have minimized the monitoring region and recorded the
size of the minimal region. While using the optimal bandwidth parameters is not possible
in practice (since the next event location is not known in advance), this analysis gives
an indication of the best possible performance of temporally weighted kernel methods
for predicting the next event in a series. Figures 4 and 5 show the results using ROC
type curves (similar to accuracy concentration curves (Johnson et al. 2008)). These show
the probability that an event would be detected if a given size monitoring region was
used. This is equivalent to what Bowers et al. (2004) term search efficiency rate. Because
we used the optimal bandwidths for each crime, these curves represent the best possible
performance of the temporally weighted KDE method1.
Figure 4 shows the results, by crime type, for any history length. Recall that we are

taking the average scores from each offender across every history length so every offender
contributes equally to the performance. Notice that breaking and entering crimes have
the potential to be the most accurately predicted (e.g. 69% of crimes could be detected
with 10 km2 monitored) while motor vehicle theft is the least predictable (e.g. only 37% of
crimes could be detected with 10 km2 monitored) via space-time kernel density methods.
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Figure 4. Optimal performance, by crime type, averaged across all history lengths.

Figure 5 divides the crime prediction capability by history length. Predicting next
event locations based on a long history (≥ 9 prior events in the series) appears to al-
low slightly better prediction than short or medium history lengths. However, the 95%

1We considered a limited number of spatial and temporal bandwidths, so the actual optimal performance may
improve slightly if a larger number of bandwidths are considered.
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pointwise confidence interval1 for Total shows that this is not a statistically significant
advantage (since the confidence interval mostly contains the short, medium, and long
history lengths). These results also hold when the individual crime types are considered
by history length (plots not shown). This suggests that predicting future crime events
when only a short history is available may not be less accurate than those that have a
long history available.

0 10 20 30 40 50

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

monitoring size (km2)

P
r(

d
e
te

c
t)

Short
Medium
Long
Total
Total−C.I.

Figure 5. Optimal performance for all crime types by history length. The 95% pointwise con-
fidence interval is for Total (i.e. any history length) and shows that there is little statistical
evidence that the optimal performance differs by history length.

It is apparent from Figure 4 that the temporally weighted kernel model (equation 5)
is most appropriate for predicting the location of breaking and entering crime series
while motor vehicle theft and robbery series cannot be predicted very well by the kernel
model. In addition, Figure 5 shows that the series length has little impact on potential
performance. Thus, we will focus on breaking and entering crime series of any history
length for subsequent analysis.
While Figures 4 and 5 show the optimal performance from the kernel based method,

it does not inform on the particular spatial and temporal bandwidths that are identified
as optimal. Thus, Figure 6 shows how often a particular bandwidth pair was optimal in
reducing the monitoring region size for all breaking and entering crime series. Recall that
a temporal bandwidth of 0 uses only the event(s) from the most recent event day, while
a temporal bandwidth of ∞ weights all prior events equally (making it equivalent to
the retrospective kernel model). Notice that while the distribution across bandwidths is
fairly even, the extremes were most often the optimal parameters. This is not surprising
as the 0 temporal bandwidth will be optimal whenever the next event is closest to the

1The pointwise confidence intervals are constructed from a binomial distribution with probability parameter given
by the Total probability of detection and size of 590 (the number of series used to construct the curve).
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most recent event(s) and ∞ will be optimal when there is no temporal ordering in the
distance from the next event to all prior events.
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Figure 6. The average percentage that each bandwidth combination was optimal for breaking
and entering crime series.

This analysis highlights the best possible performance of the temporally weighted ker-
nel density based prediction. While this method has the potential to yield good results
(especially for breaking and entering series), there is still much room for improvement.
For temporally weighted kernel models, events relate to each other only through their
geodesic distances and time differences. As such, they do not include any additional spa-
tial or temporal information that describe the environment in which the offenders are
making decisions. Other methods which incorporate the features or attributes related to
spatial locations and time may allow performance improvements, but they must be able
to make predictions from very few prior events (e.g. only 3 or 4).

4.2. Fixed Bandwidth Models

The previous subsection outlines the performance when the optimal bandwidths are
used for each predicted event. But how much would the performance decrease if only
one fixed bandwidth pair was used for all event predictions? Figure 7 shows the median
monitoring size for breaking and entering crimes of any history length. This is constructed
by taking the median of the average monitoring region required to detect the next event
for each series. In contrast to the optimal results that most often select one of the extreme
bandwidths, the parameters that minimize the median monitoring region have a spatial
bandwidth of around 600 meters and temporal bandwidth of around 60 days. The surface
is flat and considering the monitoring region is in km2, good results are obtained with
all bandwidth parameters in the upper right side of the plot. Another observation is that
the infinite temporal bandwidth (Inf) has a competitive median score for any spatial
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bandwidth suggesting that an equal weighting for all prior events (i.e. separability) may
not be a bad modeling assumption.
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Figure 7. The median monitoring region required to cover the next event prediction for breaking
and entering crime series.

In addition to the median monitoring size for event detection, we can also examine
the ROC curves to find the probability of detection for a certain monitoring region
size. Figure 8 shows the ROC curves for all 60 fixed bandwidth models for breaking and
entering crimes for all history lengths (along with the optimal curve). The relatively tight
clustering of the fixed bandwidth models shows that the probability of detection is not as
influenced by outliers (next events that occurred very far from the previous ones) as the
median search region. Some of the fixed bandwidth models can offer good performance.
For example, at the 10 km2 monitoring size the optimal parameters can detect an average
of 69% of the crimes while the best fixed bandwidth model (θs = 200 m2, θt = 60
days) can detect an average of 65% of the crimes. Figure 9 provides the average (across
monitoring sizes 0-50 km2) difference from the optimal curve for each bandwidth pair.
This suggests that the best fixed bandwidth model uses a spatial bandwidth of around
100 meters and temporal bandwidth of around 60 days. However, good performance
can be obtained with spatial bandwidths varying from 100-400 meters and temporal
bandwidths ranging from 7-∞ days.
Figure 10 shows the average departure from optimal for the remaining crime types.

This reveals that while the other crime types have differences in the amount that they
depart from the optimal, they do share a common pattern of smaller spatial bandwidth
and larger temporal bandwidths giving rise to the best performance.

4.3. Dynamic Bandwidth Models

While the fixed bandwidth model use one bandwidth pair for every prediction, the op-
timal bandwidth potentially takes a different value for each event (see Figure 6 for the
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for any history lengths. The black line is the optimal curve if the bandwidth can vary for each
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θs = 200 m2 and temporal bandwidth of θt = 60 days which gives the best performance at the
10 km2 monitoring region.

proportion a certain bandwidth pair was optimal). For example, the optimal bandwidth
parameters for predicting the kth event might be (θs = 2000, θt = 0) while for event
k + 1, the optimal values are (θs = 100, θt = ∞). In other words, the best possible
performance will come from a model that potentially uses a different bandwidth pair
for predicting each event in a series. Using such a dynamic bandwidth model has the
potential to increase the probability of detection by more than 4% for the breaking and
entering crime series in Baltimore County (see Figure 9). But this poses the challenge:
how do we determine the rules for choosing a bandwidth pair in a given scenario?
This is a difficult problem as many of the common bandwidth selection methods (Jones

et al. 1996, Loader 1999) either do not extend directly to multiple dimensions (space-
time) or are not stable for small sample sizes (e.g. only 3-6 prior events). For the spatial
bandwidth, Paulsen (2011, pg. 55) suggests using the average nearest neighbor distance
(NND) between prior crimes as the spatial bandwidth for a quartic kernel. This trans-
lates1 to using roughly the average nearest neighbor distance divided by 2.623 as the
spatial bandwidth for a Gaussian kernel. For the temporal bandwidth, Paulsen (2011,
pg. 55) recommends an event weight proportional to the number of days since the first
event in the series. Specifically, this uses

wi(t) = (ti + δ)/
∑

j

(tj + δ) (11)

1The most equivalent bandwidth for a Gaussian kernel is 1/2.623 times the quartic (Härdle and Linton 1994).
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Figure 9. Average (across monitoring sizes 0-50 km2) difference from the optimal probability
of detection using a fixed bandwidth model for predicting breaking and entering crimes for any
history length.

where tj is the time2 (in days) since the first event of the series and δ is a small offset3

to allow the first event in the series to make a contribution. Notice that this choice is not
a function of the prediction time t, but rather a function of the time between the prior
events only. Because of this, long lags between the next predicted event will not affect
the weighting as it would if the temporal weight is a function of time since the previous
events.
Figure 11 shows how the dynamic models compare to the optimal and fixed bandwidth

models. Using δ = 1 and restricting1 the spatial bandwidth to [100, 2000] meters, the
fully dynamic model using a spatial bandwidth based on the average NND of the historic
events and a temporal weighting given by (11) does not perform as well as most fixed
bandwidth models. However, if this is modified slightly to still use the spatial bandwidth
based on average NND, but always use a temporal bandwidth of ∞, the performance is
competitive with the best of the fixed bandwidth models. Furthermore, the plot shows the
potential of some dynamic models. The green line labeled NND-Opt in Figure 11 uses the
average NND based spatial bandwidth but optimal temporal bandwidth and the orange
line uses the optimal spatial bandwidth when the temporal bandwidth is ∞. This shows
that these simpler dynamic models where only the spatial or temporal bandwidths are
modified per event has the potential to significantly improve performance.

2The midpoint is used when there is uncertainty in the event times.
3This offset was not included in Paulsen (2011).
1This was necessary to improve performance.
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(b) Motor Vehicle Theft
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Figure 10. Average (across monitoring sizes 0-50 km2) difference from the optimal probability
of detection using a fixed bandwidth model for predicting (a) robbery (b) motor vehicle theft (c)
mixed series and (d) all crimes for any history length.

5. Discussion

A temporally weighted kernel density model (equation (5)) was developed for predicting
the location of the next event in a crime or terrorism series. The temporal weights indicate
how much influence past events have toward predicting future event locations and can
also incorporate uncertainty in the event timing. The model is shown to be an estimate of
the conditional spatial density from a space-time point process as well as related to recent
methods of prospective spatial event forecasting. Furthermore, we presented an approach
for evaluating the effects of bandwidth on model performance and for determining the
optimal set of bandwidth parameters for a given series dataset based on ROC type plots
and average monitoring region. While this analysis was carried out by creating specific
R functions to speed computation2, a fully GIS implementation can, in principal, be
achieved by using more standard functions. All R code used in this research is available
upon request.

5.1. Crime Series Evaluation

To illustrate how the parameters of a temporally weighted kernel density model can
influence next event prediction, a set of 590 crime series in Baltimore County, MD from
1999-2011 was analyzed. While this example used series from criminal events, the same

2All calculations took about one hour of computing time (i.e. a few seconds per series).
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Figure 11. ROC curves for some dynamic bandwidth models using breaking and entering crimes
for any history length. The black line is the optimal curve if the bandwidth can vary for each
event prediction, blue line is the fully dynamic model, red line is the partially dynamic model
using average NND for the spatial bandwidth but ∞ for the temporal, green and orange lines
are the optimal models when the spatial bandwidth is based on average NND and the temporal
bandwidth is ∞ respectively.

method can be applied to series of terrorism related events. Our purpose was not to
provide one specific model or parameter value to use for all next event predictions. Rather,
we wanted to present a framework for temporally weighted kernel density estimation,
including model selection (fixed or dynamic) and parameter estimation. This will enable
researchers and practitioners in other jurisdictions, with other event types, to develop
the best predictions for their data.
Figure 4 shows that the breaking and entering series are easiest to predict while the

robbery and motor vehicle theft series are more difficult to predict using the kernel
models. The limitations of temporally weighted kernel density for motor vehicle theft
and robbery suggests that other methods may be more appropriate for predicting events
from such series (although the smaller sample size for these crime series caution against
too strong of a statement). Figure 5 shows that for these data, the length of the available
history for a series does not have a significant impact on potential performance. While this
result is surprising when considering that larger sample sizes often lead to more precision,
it may be that the longer series correspond to offenders whose site selection patterns are
unusual and thus more difficult to apprehend. Further research, using additional datasets,
is necessary to further explore this hypothesis.
Figures 8 and 9 show that, for fixed bandwidth models, the performance based on moni-

toring region is not very sensitive to choice of bandwidth. For the Baltimore County crime
data, small spatial bandwidths ranging from 100-400 meters and temporal bandwidths
ranging from 7-∞ days offers comparable performance. Furthermore, an infinite tempo-
ral bandwidth (i.e. weighing all prior events equally) also performs close to the optimal
suggesting that most offenders will often choose sites relatively close to their earlier crime
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locations. Nevertheless, because temporal weighting does improve performance for fixed
bandwidth models and has the potential to greatly improve performance in the dynamic
framework, we suggest that these results do offer some support to the foraging hypothesis
(although this is not a formal test).
Figure 10 shows the general pattern that using smaller spatial bandwidths and larger

temporal bandwidths, for the fixed model, also results in better performance for the
other crime types. This may not be too surprising as small temporal bandwidths will put
the majority of the weight on the most recent events and effectively remove the other
events from consideration. Since prediction is only based on a small number of prior
events, too strong of a reduction of the (effective) sample size can offset the potential
gains in adapting to the most recent spatial patterns when using too small of a temporal
bandwidth. Small spatial bandwidths imply that future events are more likely to occur
close to previous events. An offender may choose future sites that are closer to previous
events because the distribution of the targets is denser in those locations (Brantingham
and Brantingham 1995), the offender’s knowledge of available targets is limited by their
activity and awareness space (Brantingham and Brantingham 1993), or because limited
travel is involved (Rossmo 2000).
The analysis was applied to crime series in a US county. While highly populated,

Baltimore County contains a mix of urban, suburban and rural areas. This may have
implications for the optimal bandwidth parameters as criminals may be more likely to
travel by vehicle resulting in longer distances between crimes. Figure 2 shows that most
crimes occurred along major roads and thus the road network likely contributes to the
travel behavior of the offenders. It would be interesting to analyze crime series in other
regions to discover if the optimal parameters were consistent with what was observed in
the Baltimore County series data.
The patterns and performance of the kernel models for the Baltimore County crime

series data may not extend to other regions, for other crime types, or for other time peri-
ods. Model performance and bandwidth selection for other datasets should be estimated
empirically, following the procedures outlined in this paper.

5.2. Model Improvement

There is still room to improve the temporally weighted kernel model for next event
prediction. One approach is to find better parameter selection in the dynamic bandwidth
models. We have only considered weights that are a function of the time since the previous
events and time since the first event. It may be that different options for the temporal
weights can offer improvement. If offenders learn by committing offenses, then the next
event locations and times may be a function of the cumulative number of events (Clauset
and Gleditsch 2011). Weights might also change by time of day or day of week (Coupe
and Blake 2006). It may also be beneficial to assign weights that are a function of the
attributes of the events such as the severity (e.g. amount stolen or casualties) of the
event (Porter et al. 2012). In addition, allowing spatial bandwidths to be adaptive (i.e. a
function of space) may help by allowing the bandwidths to be larger for events that are
far away from other events in the series.
Another way to improve next event prediction is to incorporate the attributes of the

spatial locations into the model. Currently, the kernel model naively assumes that future
events can occur anywhere in the study area and the likelihood of a location is only a
function of its distance to past events in the series. This does not take into account the
preferences of the event initiators or the distribution of targets. Including target availabil-
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ity (e.g. population/housing density), location attributes (e.g. neighborhood characteris-
tics, proximity to crime generators or attractors), or target attributes (e.g. type of target,
description of target) has the potential to better account for site selection behavior and
result in improved predictions. For example, Xue and Brown (2003) use a spatial choice
model that incorporates aspects of a location’s attributes and the probability that the
location is being evaluated by the offender. O’Leary (2009) provides a Bayesian frame-
work for predicting future events based on location attributes and the offender’s journey
to crime behavior. However, neither of these models have been evaluated for predicting
the next event location in a series.

5.3. Uncertainty in the series

We have assumed that all events are known to be in the series with certainty and no
events from the series are missing. When there is uncertainty in series membership,
results from case linkage or clustering can be used to probabilistically assign events to
the series or even create the series itself. To incorporate probabilistic membership, the
temporally weighted KDE in (5) can be modified

f̂(s|t) =

∑nt

i=1 pi · wi(t) ·K(‖s − si‖; θs)
∑nt

i=1 pi · wi(t)

where pi is the probability that event i is part of the series. Missing events pose an addi-
tional challenge as they can skew the optimal bandwidth parameters. While the nature
of the RCAP crime data allows events to be captured even when they fall over a jurisdic-
tional boundary, the series were constructed from arrest data. As such, we anticipate that
the series are incomplete. How much of an effect this has on the performance estimates
and optimal bandwidth parameters is uncertain and should be a topic of future research.
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